Sales in the U.S.
of electronic cigarettes (a.k.a. e-cigarettes) have more than doubled since
2014 to 3.6 billion dollars in 2018 with currently 4 to 6 million units being
sold every year. Teens are now more likely to use e-cigarettes than cigarettes
with 9.5% of 8th graders and 16.2% of 12 graders using e-cigarettes
according to www.drugabuse.gov. In the U.S. new products are put on the market
with only limited short-term safety testing and no long term testing on the
health effects of chronic usage. In the case of e-cigarettes this results in primary
and secondary exposure to aluminum vapor that may become a risk to mental
health after years of chronic exposure. In this review what is known about
aluminum vapor’s toxicity in aluminum welders and narcotics users who “chase
the dragon” is applied to what is known about using aluminum containing Kanthal
wire as a heated filament in e-cigarettes.
Aluminum Neurotoxicity - Aluminum kills neurons and causes a variety
of neurological problems including death. Aluminum accumulates over a period of
years in areas of the brain resulting in aluminum hotspots. The olfactory bulb is
both responsible for the sense of smell in the brain and is an aluminum hotspot1.
If aluminum is ingested with food or drink it must cross the gut-blood-barrier
and then cross the blood-brain-barrier in order to get inside the brain. Both
of these barriers together exclude most of ingested aluminum from entering the
brain unless there has been traumatic brain injury,
However, if aluminum is inhaled from the nose
or mouth these two barriers are skipped as aluminum goes directly to the
olfactory bulb of the brain by axonal transport from nasal passages2-5. Once in the olfactory bulb the aluminum
finds its way into both the entorhinal and frontal cortexes and the hippocampus6
causing shrinkage of the brain and impaired memory7. In addition, inhaled aluminum has been found
in the myelin rich white matter region of the brain3. Shrinkage of the
brain and damage of myelin due to inhaled aluminum is a likely cause of toxic leukoencephalopathy
that can result in death. Therefore avoid inhaling aluminum by making the
following lifestyle choices:
·
Avoid
Inhaling Aluminum Vapor while Welding
·
Avoid
“Chasing the Dragon”
·
Avoid
e-cigarettes with Kanthal heater coils
Inhaling Aluminum through the Nose and Mouth
The human nose and
mouth are connected by the retronasal passageway as diagrammed in the following
figure. This passageway allows us to smell food in our mouth even with our nose
plugged. Therefore any vapor that reaches our olfactory receptors either from
inhaling ‘out-there’ orthonasally or ‘in-the-mouth’ retronasally can be
axonally transported directly to the olfactory bulb of the brain by-passing the
blood-brain-barrier. In other words inhaling e-cigarette vapor by either the
nose or mouth exposes the olfactory receptors and olfactory bulb of the brain
to vapors.
Aluminum Welding – Welding aluminum in an inert atmosphere
results in aluminum rich vapors that when inhaled cause high levels of aluminum
in the urine and a decrease in cognitive and motor (i.e. muscular) performance. This was confirmed with two studies one in
Finland in 1996 and one in Sweden in 20008,9. In both studies aluminum welders had much
higher levels of aluminum in their urine than did steel welders. The welders in
both studies were categorized into 3 sub-groups based upon urinary aluminum
levels. Testing the welder’s cognition revealed a dose dependent correlation
between urinary aluminum levels and declining cognitive performance. Also analysis of electro-encephalography (EEG)
testing revealed abnormalities only in the aluminum welders with a higher
frequency of abnormalities in those aluminum welders with high levels of
aluminum in their urine8,9. In addition, disturbed central nervous
system driven motor (i.e. muscular) function was observed only in the aluminum
welders with higher levels of aluminum in their urine8.
Aluminum tops the
list of metals that cause oxidative damage to the brain with manganese being third
on the list with less than half the oxidizing power of aluminum10. Vapor
exposure to these metals is common when welding either aluminum alloys or steel
and nickel alloys that contain manganese. Manganese has a vapor pressure of
1x10-5 bar at 955oC while aluminum has the same vapor
pressure at 1,200oC11,12. Note that in aluminum
containing alloys of iron, chromium, and aluminum, such as Kanthal and PM2000,
all the aluminum is vaporized after 70 hours at 1,200oC in an oxygen
and moisture rich atmosphere13.
No MRI has been
reported of an aluminum welder’s brain. However, inhaled organo-aluminum
compounds and aluminum ions and particles have been found to be axonally transported
into the olfactory bulb and beyond into the hippocampus and white matter
regions of the brain bypassing the protective blood-brain-barrier2-5.
Chronic exposure to
levels of manganese in air greater than 5mcg/m3 can lead to a
variety of psychiatric and motor (i.e. muscular) disturbances called manganism.
Unlike aluminum, manganese can be detected by T1 weighted MRI scans of the
brain. It has been shown by T1 weighted MRI scans that manganese accumulates in
the olfactory bulb of the brain of steel alloy welders at much higher than
normal levels14. In addition, it has been shown that both soluble manganese
ions15-17 and insoluble manganese particles18 are
transported along the olfactory nerve directly into the olfactory bulb and cortex
and further into the brain (i.e. the amygdala) bypassing the protective
blood-brain-barrier.
Therefore whenever
welding aluminum alloys or manganese containing steel alloys always wear
protective breathing gear or weld with just arms inside a fume hood with
adequate ventilation for brain protection.
Chasing the Dragon – In order to avoid diseases transferred by
using needles to inject narcotics, many users switched to inhaling narcotics.
The most common method is called “chasing the dragon” which involves heating by
flame from below the narcotic on a small piece of aluminum foil while inhaling
the vapor with a straw19. Depending upon the heat produced by the
flame some aluminum foil is burned, vaporized, and inhaled along with the
narcotic. In those cases where the user’s brain was examined by CAT and MRI
scans, voids were found in the myelin
that makes up the white matter region of the brain due to a decreased
number of neurons and oligodendrites20,21. Bilateral and symmetrical
hyper-intensities in cerebral white matter and middle cerebellar peduncles were
found using T2 weighted MRI20. The white matter in these brain
regions has the appearance of Swiss cheese. The symptoms of this disease
include mental deterioration, vison loss, speech disturbances, paralysis, and
coma. This condition has been named both progressive and acute toxic
leukoencephalopathy, multifocal leukoencephalopathy, and spongiform leukoencephalopathy.
Myelin is the preferential target of
aluminum-mediated oxidative damage22. In 2008 the link between aluminum
accumulation and progressive toxic leukoencephalopathy was reported in a 20
year old woman in whose brain aluminum
deposits were found in the myelin sheath making up the white matter region
of her brain after autopsy23. As in the cases of “chasing the dragon”,
bilateral and symmetrical hyper-intensities in cerebral white matter and middle
cerebellar peduncles were found using T2 weighted MRI scans23. In
this women’s case the cause of aluminum accumulation was possibly due to a prior
traumatic brain injury that made her blood-brain-barrier more permeable to
aluminum but “chasing the dragon” was not ruled out23.
It has been suggested
that acute toxic leukoencephalopathy can be clinically reversed by removing the
casual toxin24. For instance, by both avoiding “chasing the dragon”
and drinking OSA rich silica water could potentially reverse the disease and
heal the brain by removing aluminum25. Drinking silica water has
been shown to selectively remove aluminum from five lobes of the brain,
including the olfactory bulb1.
E-cigarettes with Kanthal Heating Coils - E-cigarettes (a.k.a. e-cigs) are handheld
devices for vaporizing liquids (a.k.a. e-liquids) in order for the user to
inhale the vapor. Inside each e-cigarette
are one or more coils of resistance wire (a.k.a. vape wire) that are heated
either at constant temperature or constant wattage (i.e. constant power mode) with
an internal battery. There are five different types of vape wires generally
used: Kanthal (an iron-chromium-aluminum alloy), NiChrome (e.g.
nickel-chromium alloy), stainless steel, nickel (e.g. nickel-manganese alloy), and titanium. The
vape wire coils are filled with a wicking material (e.g. cotton, wool, silica,
or rayon fibers) saturated with the e-liquid mixture primarily containing
glycerol and/or propane-1,2-diol26.
Kanthal vape wire has a stable resistance
regardless of coil temperature and for this reason must be heated at a controlled
wattage (i.e. power mode) not a controlled temperature27. Therefore the temperature of Kanthal vape
wire coils will rise above normal in the absence of sufficient e-liquid being
wicked to the coil. This is called
getting “dry hits” during which the temperature of the vape wire rises to temperatures
that allow aluminum to be vaporized more readily from Kanthal vape wire.
Nickel vape wire has
a predictable change in resistance with temperature (i.e. temperature
coefficient)27. Therefore nickel-manganese alloy vape wire coils,
such as in the T3 eGo e-cigarette26, are heated at a controlled
temperature by detecting the resistance in order to control the coil
temperature. This keeps the coil temperature from rising higher than normal. Temperature control prevents manganese from
being vaporized from nickel-manganese alloy vape wire. Only a very small amount
(i.e. one nanogram) of manganese has been found in T3-eGo e-cigarette aerosol26.
Kanthal alloy is the most popular vape wire as
it is easy to work with, has good resistance to oxidation, it’s not springy so
it holds shape, and it’s inexpensive. In addition it holds shape well when re-wicking. The
main problems with Kanthal alloy are that it must be heated at constant wattage
and not constant temperature and it contains 4% to 7% aluminum that is not
thermally stable. When Kanthal wire was heated for 70 hours at 1,200oC
all the aluminum is vaporized13.
There
have been three studies that have found aluminum in e-cigarette aerosols but in
two studies the vape wire was not Kanthal and in the third study the type of vape
wire was undiscolosed26,28,29. Heating Kanthal wire at a constant wattage (i.e.
constant power) and not a constant temperature allows the temperature to rise
significantly when the wick can’t supply e-liquid quick enough (i.e. “dry hit”).
This is because the thermal conductivity of an e-liquid containing
propane-1,2-diol and/or glycerol is more than ten times higher than moist air at
25oC (e.g. 0.20-0.29W/mK versus 0.018W/mK) 30-32. For brain health aluminum containing vape
wire, such as Kanthal, should not be used for heater coils in e-cigarettes. Since
there are many other safer vape wire choices, do not use e-cigarettes in power
mode with Kanthal vape wire coils.
References
1.
Belles, M., et al.; Silicon
reduces aluminum accumulation in rats: Relevance to the aluminum hypothesis of
Alzheimer’s disease; Alzheimer’s Disease Associated Disorders; 12(2):83-87
(1998)
2.
Sundreman, F.W. Jr.; Nasal
toxicity, carcinogenicity, and olfactory uptake of metals; Annals Clin. Lab.
Sci.; 31(1):3-24(2001)
3.
Zatta, P., et al.; Deposition
of aluminum in brain tissues of rats exposed to inhalation of aluminum
acetylacetonate; Neuroreport; Sept.; 4(9):119-22 (1993)
4.
Perl, D.P. and Good, P.F.;
Uptake of aluminum into central nervous system along nasal-olfactory pathways;
Lancet; May; 1(8540:1028 (1987)
5.
Divine, K.K., et al.;
Quantitative particle-induced x-ray emission imaging of rat olfactory
epithelium applied to the permeability of rat epithelium to inhaled aluminum;
Chem. Res. Toxicol.; 12(7):575-81 (1999)
6. Andrasi, E., et al.; Brain Al, Mg, and P contents of control and
Alzheimer-diseased patients; J. Alzheimer’s Dis.; 7:273-84 (2005)
7. Fjell, A.M., et al.; One-year brain atrophy evident in healthy
aging; J. Neurosci.; Dec.; 29(48):15223-31 (2009)
8.
Sjogren, B., et al.; Effects
on the nervous system among welders exposed to aluminum and manganese; Occup.
Environ. Med.; 53:32-40 (1996)
9.
Riihimaki, V., et al.; Body
burden of aluminum in relation to central nervous system function among metal
inert-gas welders; Scand. J. Work Environ. Health; 26(2):118-130 (2000)
10. Pogue, A.I., et al.; Metal-sulfate induced generation of ROS in
human brain cells: detection using an isomeric mixture of 5- and
6-carboxy-2’,7’-dichlorofluoresein diacetate (carboxy-DCFDA) as a cell permeant
tracer, Int. J. Mol.; 13:9615-26 (2012)
13. Opila, E.J., et al.; Oxidation of high-temperature alloy wires in
dry oxygen and water vapor; NASA Glenn Research Center; Cleveland, OH
14. Sen, S., et al.; Manganese accumulation in the olfactory bulb and
other brain regions of “asymptomatic”
welders; Toxicological Sci.; 121(1):160-67 (2011)
15. Chuang, K.H., and Koretsky, A.; Improved neuronal tract tracing
using manganese enhanced magnetic resonace imaging with fast T(1) mapping;
Magn. Reson. Med.; Mar.; 55(3):604-11 (2006)
16. Hendriksson, J., et al.; Transport of manganese via the olfactory
pathway in rats: dosage dependent dependency of the uptake and subcellular
distribution of the metal in the olfactory epithelium and the brain; Toxicol.
Applied Pharmacol.; 156(2):119-128 (1999)
17. Tjalve, H., et al.; Uptake of manganese and cadmium from the nasal
mucosa into the central nervous system via olfactory pathways in rats;
Pharmacol Toxicol.; Dec.; 79(6):347-56 (1996)
18. Elder, A., et al.; Translocation of inhaled ultrafine manganese
oxide particles to the central nervous system; Environ. Health Perspect.; Aug.;
114(8):1172-8 (2006)
19. Buxton, J.A., et al.;
Chasing the dragon – Characterizing cases of leukoencephalopathy associated
with heroin inhalation in British Columbia; Harm Reduction Journal; 8(3):1-5
(2011)
20. Liu, S. and Tanoura, T.; Heroin-associated spongiform
leukoencephalopathy; Appl. Radiol.; Nov.; pp50-52 (2016)
21. Singh, R., and Saini, M.; Toxic leukoencephalopathy after ‘chasing
the dragon’; Singapore Med. J.; 56(6):e102-4 (2015)
22. Verstraeten, S.V., et al.; Myelin is a preferential target of
aluminum-mediated oxidative damage; Arch. Biochem. Biophys.; 344:289-94 (1997)
23. Itoh, M., et al.; Progressive leukoencephalopathy associated with
aluminum deposits in myelin sheath; J. Child Neurology; 23(8):938-43 (2008)
24. McKinney, A.M., et al.; Acute toxic leukoencephalopathy: potential
for reversibility clinically and on MRI with diffusion weighted and FLAIR
imaging; July; Am. Roentgen Ray Soc.; AJR-193; 192-206 (2009)
25. Crouse, D.N.; Silica water
the secret of healthy blue zone longevity in the aluminum age; Available from
Amazon (2018)
26. Palazzolo, D.L.; Trace
metals derived from electronic cigarette (ECIG) generated aerosol: Potential
problem of ECIG devices that contain nickel; Jan.; Frontiers in Physiol.;
7(Article 663):1-17 (2017) Note: vape wire did not contain aluminum but did
contain 9% manganese. 1.2mcg of aluminum and 0.001mcg of manganese were trapped
from the aerosol. Source of aluminum is unknown but could be from a woven
around the core.
28. Williams, M., et al.; Metal and silicate particles including
nanoparticles are present in electronic cigarette cartomizer fluid and aerosol;
PLOSone; Mar.; 8(3)1-11 (2013) Note: vape wire did not contain aluminum or
manganese. Source of aluminum containing particles is unknown but could be
either aluminosilicate beads or aluminosilicate containing fiberglass.
29. Farsalinos, K.E., et al.; Are metals emitted from electronic
cigarettes a reason for health concern? A risk-assessment analysis of currently
available literature; Int. J. Environ. Res. Public Health; 12:5215-32 (2015)
Note: EC13 produced more aluminum vapor than any other e-cigarette tested but
like all others tested there was no mention of what vape wire it contained.
30. Lasance, C.J.M.; The thermal conductivity of moist air; Design;
Number 4. Technical Data, Test & Measurement; Vol. 9. Moist Air, Thermal
Conductivity; Nov.; (2003)
31. Daubert, T.E., et al.;
Physical and thermodynamic properties of pure compounds: Data compilation;
Taylor and Francis, Bristol, PA (1994)
32.
Marsh, K.N.; Recommended reference materials for realization of
physiochemical properties; Blackwell Scientific Publications; Oxford
(1987)